The discrete Fourier transform and the particle mixing matrices

نویسندگان

  • C A Brannen
  • M D Sheppeard
چکیده

In quantum mechanics, the Fourier Transform commonly converts from position space to momentum. For finite dimensional Hilbert spaces, the analog is the discrete (or quantum) Fourier transform, which has many applications in quantum information theory. We explore applications of this discrete Fourier transform to the elementary particle generations, and then present a related and elegant new parameterization for unitary 3× 3 matrices that is compatible with the tribimaximal MNS matrix. PACS numbers: 12.15.Ff, 14.60.Pq Submitted to: New J. Phys.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A general construction of Reed-Solomon codes based on generalized discrete Fourier transform

In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes  enjoy nice algebraic properties just as the classic one.

متن کامل

Detection of high impedance faults in distribution networks using Discrete Fourier Transform

In this paper, a new method for extracting dynamic properties for High Impedance Fault (HIF) detection using discrete Fourier transform (DFT) is proposed. Unlike conventional methods that use features extracted from data windows after fault to detect high impedance fault, in the proposed method, using the disturbance detection algorithm in the network, the normalized changes of the selected fea...

متن کامل

Discrete Fractional Hartley and Fourier Transforms

This paper is concerned with the definitions of the discrete fractional Hartley transform (DFRHT) and the discrete fractional Fourier transform (DFRFT). First, the eigenvalues and eigenvectors of the discrete Fourier and Hartley transform matrices are investigated. Then, the results of the eigendecompositions of the transform matrices are used to define DFRHT and DFRFT. Also, an important relat...

متن کامل

Sampling Rate Conversion in the Discrete Linear Canonical Transform Domain

Sampling rate conversion (SRC) is one of important issues in modern sampling theory. It can be realized by up-sampling, filtering, and down-sampling operations, which need large complexity. Although some efficient algorithms have been presented to do the sampling rate conversion, they all need to compute the N-point original signal to obtain the up-sampling or the down-sampling signal in the tim...

متن کامل

Rank-deficient submatrices of Fourier matrices

We consider the maximal rank-deficient submatrices of Fourier matrices. We do this by considering a hierarchical subdivision of these matrices into low rank blocks. We also explore some connections with the FFT, and with an uncertainty principle for Fourier transforms over finite Abelian groups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009